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Abstract

Human-induced environmental changes have dramatically changed habitats worldwide, decreasing
the quantity and quality of habitats for wildlife and putting wild populations at risk. In the cur-
rent study habitat suitability of the honey badger (Mellivora capensis) across its distribution range
in Southern Iran was investigated. We combined presence-only field data with environmental and
anthropogenic variables, generating an ensemble model of habitat suitability based on four species
distributionmodels. The contribution scores of anthropogenic variables (human footprint index and
village density) in the model were noticeable, indicated that honey badgers do not avoid human-
modified areas. The ensemble model further revealed large areas of low quality of natural habitats
across the study area. Land use changes may have led honey badgers to settle in poor-quality habi-
tats, where their fitness may be lower than in other available habitats. Therefore, there is a possible
risk of an ecological trap due to the lack of protected high-quality habitats. Further research on
honey badger fitness, in human-modified areas, is required to evaluate the hypothesis of ecological
trap.

Introduction
Every species has a set of resource requirements and physical condi-
tions under which it can survive and reproduce (Peterson et al., 2011).
Having adequate knowledge about habitat requirements of a particular
species is necessary to inform management activities aimed at conser-
vation (Elith and Leathwick, 2009; Schwartz, 2012). Species distribu-
tion models (SDMs) are generally used to investigate basic questions
regarding the potentially suitable habitats and their environmental de-
terminants for a target species (Joy and Death, 2004; Elith and Leath-
wick, 2009). These models are cost effective and valuable to map the
distribution of organisms (Guisan and Zimmermann, 2000; Seoane et
al., 2003; Fourcade et al., 2014). However, since human activities di-
rectly and indirectly affect the quantity and quality of habitat in vari-
ous ecosystems, meaning that animals increasingly come upon condi-
tions they have not experienced in their evolutionary history (Pereira
et al., 2010), information on human-related impacts such as that avail-
able in the form of maps and databases (Sanderson et al., 2002) should
be implemented into predictive SDMs to inform policies and promote
species conservation.
The accuracy of SDMs depends on the data analyzed, the environ-

mental variables used for modelling, and underlying model structure
(Austin, 2007). Available data used formodel developmentmay sample
a restricted environmental range, preventing complete description of
ecological relationships shaping habitat use (Thuiller et al., 2013). Ad-
ditionally, without complete knowledge of processes underlying habitat
selection, the environmental variables best used for modelling may be
unclear. Finally, models often emphasize linear relationships within a
resource selection framework (i.e., comparison of habitat use vs. avail-
ability), which may not adequately describe relevant ecological rela-
tionships (Austin, 2007). To deal with these uncertainties, some re-
searchers combine predictions from multiple models using an “ensem-
ble” approach (Araújo andNew, 2007). By combiningmodels differing
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in structure, explanatory variables, and data sources, ensemble predic-
tions allow inferences that are robust to uncertainties associated with
any individual model. Ensemble modelling has been used globally to
predict responses to climate change (Araújo and New, 2007) and to
map habitat selection of various species (Latif et al., 2013; Meller et
al., 2014; Salas et al., 2017).

We used an ensemble approach to develop model-based predictions
of habitat selection of one of the least studied mesocarnivores, the
honey badger (Mellivora capensis,Schreber 1776). The honey badgers
is the only species in the genus Mellivora, distributed in Africa, South-
west Asia and the Indian peninsula (Do Linh San et al., 2016). The
species is listed as least concern (LC) on the IUCN Red List, owning to
its wide range and its occurrence in a variety of habitats (Do Linh San
et al., 2016). Ecological information, in particular habitat selection, of
honey badgers is scarce, mainly due to its relatively wide range, elu-
sive nature of the species and low densities (Begg et al., 2005). Topog-
raphy and land cover types were found to be positively correlated with
the honey badger presence and distance to road and villages were nega-
tively correlated with the occurrence of the species (Gupta et al., 2012).
Vegetation cover and productivity play important roles in habitat selec-
tion of the honey badger (Kheswa et al., 2018). The preference of honey
badgers for denser vegetation may be a predictor of resource availabil-
ity (Pettorelli et al., 2011). Species occurrence data from camera traps
showed a higher occurrence of honey badgers in Eucalyptus plantations
than in natural habitat types (Kheswa et al., 2018). Inadequate knowl-
edge about the honey badger’s ecology and quantity and quality of its
habitat hampers effective conservation planning and species manage-
ment. Therefore, there is an interest in understanding honey badger
habitat selection and distribution to inform conservation of the species.

The current study aimed to (i) identify ecological factors affecting
the spatial distribution of honey badgers in Southern Iran, and (ii) in-
vestigate the importance of human-modified areas for the species. We
hypothesised that honey badger presence and habitat use would be af-
fected by human presence, and predicted that honey badgers would
avoid human-dominated areas.
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Table 1 – List of environmental variables used for distribution modelling of the honey badger in Southern Iran .

Variables Index Description Source
Topography Roughness

index
Indicating the amount of elevation differences between ad-
jacent cells of a digital elevation grid

Digital Elevation Model (DEM) USGS.org

Habitat NDVI Index of vegetation productivity MODIS satellite images
Climate BIO1 Annual mean temperature Wordclim.org

BIO2 Mean diurnal range http://wordclim.org

Human impact Human foot-
print index
(HI)

Representing cumulative impact of population density,
roads, land use/cover, infrastructures and human access

http://sedac.ciesin.columbia.edu/data/set/wildareas-v2-
human-footprint-geographic

Cultivated lands
Fallow lands
Dry farming

Land use Agriculture

Mix farming

Iranian Department of the Environment

Land cover Wood Woodlands, Forests Iranian Department of the Environment
Village density village density Number per area within grids of 3x3 km Iranian Department of the Environment

Figure 1 – Locations of collected occurrence points of the honey badger (M. capensis) in
Southern Iran between 2015 and 2018.

Materials and methods
Study area and data collection
The honey badger in Iran is considered as one of the rarest mam-
mal species. It is recorded mainly from southern half of the coun-
try (Qashqaei et al., 2015), though, there are historical records of the
species from the north and the northeast (Lay, 1967; Harrington and
Dareshuri, 1976). Based on the taxonomic information, honey badgers
in southwest and the northeast of Iran are belong to M. c. wilsoni and
M. c. indica, respectively and M. c. buechneri would have existed in
north of Iran (Karami et al., 2008).
We surveyed Southern Iran during a period of 3 years (2015–2018).

Southern Iran consists of the southern mountain ranges of Zagros, Cen-
tral Iranian Range, Khuzestan Plain and the northern coasts of Persian
Gulf. The occurrence data forM. capensiswere obtained from different
sources, including records of Iranian Department of the Environmen-
tal, locals’ and hunters’ observations, images captured by camera trap
and field surveys (direct and indirect signs such as the species foot-
print, dung groups and den sites). In total, 58 occurrence points were
collected. The possibility of recording one individual at multiple loca-
tions within its home range, known as pseudo replications is inevitable
(Wordley et al., 2015), but can be diminished by considering the species
home range size. For this reason, we reduced the presence points to one
within every 5 km, totaling 50 points (Fig. 1), using package dismo in
R 4.1.0 (Hijmans et al., 2020; R Development Core Team, 2014).
In 2016, a carcass of one female honey badger was recorded inGando

protected area, which was the first record of the species in Sistan and
Baluchistan, southeastern Iran (Adibi et al., 2018). However, due to the

lack of data from the southeastern region, this single occurrence point
was not included in the modelling data set to improve model accuracy.

Environmental variables

On the basis of field knowledge and information on species biology
and the limited literature available about habitat use of honey badgers
(Gupta et al., 2012; Kheswa et al., 2018) a total of 25 environmen-
tal, and anthropogenic variables, expected to influence the distribution
pattern of this species, were selected. Environmental variable related
to climate, topography and vegetation are among the most important
drivers of patterns of species distribution (Moura et al., 2016). Climate
data include the 19 bioclimatic variables obtained from the Worldclim
dataset at the spatial resolution of 1 km (www.worldclim.org). Climate
variables were tested for correlation using principal component analy-
sis (PCA) in ArcGIS 10.4.1 (ESRI, 2015), resulting in the reduction of
the 19 variables to only two variables: annual mean temperature (BIO1)
and mean diurnal range (BIO2, Tab. 1).

In order to explore the influence of topography on the Mellivora
capensis distribution, the roughness index was used as a proxy to ac-
count for the terrain heterogeneity across the study area. The rough-
ness index was calculated using the digital elevation model (DEM)
(usgs.org) and neighborhood analysis in ArcGIS 10.4.1 (ESRI, 2015).
Land use and land cover data were obtained from the Iranian Depart-
ment of the Environment. Four main land cover classes including agri-
culture, rangeland, forests and shrublands (see Tab. 1 1 for subclasses)
were extracted and Euclidean distance to each subclass were then calcu-
lated, using the Spatial Analysis Tool in ArcGIS 10.4.1 (ESRI, 2015).
In addition, normalized difference vegetation index (NDVI) was used
to represent vegetation greenness and therefore quality and quantity
of which may be important for honey badger survival and reproduc-
tion. Twelve monthly NDVI maps were produced based on year 2015
MODIS time series data at the spatial resolution of 250m, using Erdas
Imagine v.9.3 (ERDAS, 2008).

To evaluate the anthropogenic effects on the distribution of the Mel-
livora capensis, we used the human footprint index (HI) map devel-
oped by Sanderson et al., 2002 and downloaded from the Global Hu-
man Footprint Dataset (WCS and CIESIN, 2005). This index is derived
through a combination of 1 km spatial resolution data including popula-
tion density and the presence of infrastructures such as roads networks,
land use/cover and human access (WCS and CIESIN, 2005).The avail-
able data for the Asian part was downloaded and the corresponding
values for the study area (Southern Iran) were extracted. The HI in-
dex map ranged from 0–93. The density of villages was also included,
because of the coarse precision of the human footprint model. Vil-
lage density was estimated from a kernel density function applied to
village point layer obtained from a topographic military map of Iran
(1:25000). Using the Shuttle Radar Topography Mission (SRTM) el-
evation model (http://srtm.csi.cgiar.org). All data layers were prepared
in the raster format with a grid size of 1×1 km in ArcGIS 10.4. The fi-
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nal variables were tested for correlation, using the Pearson correlation
coefficient. No pairs of variables showed greater correlation above the
threshold of 0.8 (Tab. 1) and used to build the final distribution model
of the species.

Distribution Modelling Approach
An ensemble modelling approach was employed to predict the distribu-
tion of honey badgers, using the software package biomod2 (Thuiller
et al., 2009) implemented in R v.4.1.0 (R Development Core Team,
2014). This approach allowed us to simultaneously take into account
results from multiple models and build a consensus model. By fitting
several SDMs and exploring a range of predictions across more than
one set of uncertainty sources, the ensemble modelling approach in-
creases the accuracy of model predictions (Lauzeral et al., 2015) and
thus decreases the uncertainty associated with using a single SDM. As
a result of this combination, more information would be produced as
compared to the utilization of a single SDM (Meller et al., 2014).
Here, an ensemble model was developed using two regression-based

methods: generalized linear models (GLM), generalized additive mod-
els (GAM) and two machine learning algorithms: generalized boost-
ing model (GBM) and maximum entropy (MaxEnt). In addition to oc-
currence points, all these models need background data (e.g., pseudo-
absence points). Therefore, a randomly drawn set of 10000 points was
generated from the extent of study area excepting occurrence cells. For
model calibration, 75% of the occurrence points was used for model
training and the remaining 25% of data set as test data. To combine
the output of all models and obtain ensemble predictions, a weighted-
averaging approach was used and each statistic model was weighted
according to its predictive accuracy on test data (Thuiller et al., 2009).
Ensemble models were evaluated for their accuracy using two mea-

sures including, area under the curve (AUC) of a receiver operat-
ing characteristic (ROC) plot and true skill statistic (TSS). AUC is a
threshold-independent index for evaluating the performance of niche
models which is independent of species prevalence (Fielding and Bell,
1997). The AUC varies between 0 and 1. Values higher than 0.9 are
considered excellent, values between 0.9 and 0.7 indicate good predic-
tion, values lower than 0.7 considered poor prediction, and values lower
than 0.5 indicate that the model is not better than a random classifica-
tion (Swets, 1998). In contrast, TSS is a threshold-dependent measure
ranging from -1 to 1, where 1 indicates perfect agreement between pre-
dictions and observationswhile zero or negative values representmodel
performance no better than random (Allouche et al., 2006). Models
with a performance of <0.5 were discarded based on Allouche et al.,
2006. Model performance was considered as “good” only if both mea-

Figure 2 – Ensemble distribution model of the honey badger (M. capensis) in Southern
Iran developed based on consensus prediction across four di�erent distribution models
including GLM: generalized linear model, GAM: generalized additive model, GBM: Gener-
alized boosting model, and MaxEnt: maximum entropy.

Figure 3 – Distribution map of high, medium, and low suitable habitats predicted for
populations of the honey badger (M. capensis) across Southern Iran. Suitable areas along
with the location of Iranian protected areas and no-hunting zones are presented. Red
circles on the map are potential protected areas.

sures (AUC and TSS) were fulfilled. The relative contribution of each
environmental variable to species distribution prediction was investi-
gated by assessing the impact on predictions of variables randomiza-
tions (Thuiller et al., 2009).

Results
The ensemble distribution model of honey badgers showed a patchily
distributed suitable habitats for honey badgers across the study area
in Southern Iran (Fig. 2). On average, GAM and GBM distribution
models showed excellent predictive performance with respect to AUC
metric and GLM and MaxEnt good performance (0.7<AUC<0.9). The
prediction accuracy was good (e.g., TSS>0.6) for all models (Tab. 2).
The comparison of SDMs results revealed that GBM has the highest
values (AUC=0.98, TSS=0.95) while GLM had the lowest (AUC=0.79,
TSS=0.6, Tab. 2).

Using the biomod2 framework, the contribution (i.e., importance) of
variables in the honey badger’s distribution models was estimated. The
most contributing factors in the habitat suitability model of honey bad-
gers were BIO1, HI, village density, and NDVI (Tab. 3) respectively.
To evaluate the badger’s response to environmental gradient, response
curves were produced and compared. A similar pattern was observed
between the models (Fig. 4 a-h), all indicating that annual mean tem-
perature plays an important role in the habitat selection of the species
(Fig. 4b). Difference between day and night temperatures, known as
mean diurnal range (BIO2) also affected the suitability of the badger
to a lesser degree (Fig. 4c). The effect of anthropogenic variables (i.e.,
human footprint and village density) indicated that honey badgers do
not avoid human-modified areas, contrary to our prediction, and the an-
imal’s presence increased (Fig. 4d, g) with human presence. Response
curves indicated a preference of the honey badger for vegetation pro-
ductivity (Fig. 4e) as with increasing NDVI, the probability of honey
badgers occurrence increases.

Presence/absence distribution maps were overlaid to obtain an in-
tegrated suitability map of all models. The map showed that 26% of
the study area was identified as suitable habitats by at least one of the
distribution models (Tab. 4). Accordingly, 74% of the study area was
not identified as suitable by any of the distribution models (Tab. 4).
Only 8180 ha (1.6%) of the areas was classified as highly suitable habi-
tats, with a higher concentration in southwestern Iran (i.e. Khuzes-
tan Plain). Moderate suitable habitats for honey badgers stretched over
118 593 km2 representing a larger (23%) part of the study area.

A gap analysis (Scott et al., 1993) was performed by overlaying the
projected maps of the badger suitable habitats and the present network
of protected areas in Iran (Fig. 3,). Results showed that 59554 square
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Table 2 – Performance of discrimination capacity and accuracy of four di�erent algo-
rithms to map honey badgers distribution in Southern Iran. Higher values indicate better
model performance for each metric. AUC: the area under the curve of a receiver oper-
ating characteristic (ROC), TSS: true skill statistic, GLM: generalised linear model, GAM:
generalized additive model, GBM: Generalized boosting model, and MaxEnt: maximum
entropy.

GAM GLM GBM MaxEnt
AUC 0.94 0.79 0.98 0.85
TSS 0.86 0.60 0.95 0.68

Figure 4 – Response curves of honey badgers’ distribution to the gradient of the most
important predictors for habitat suitability. See Table 1 for the description of variables.

kilometers (11.5%) of the study area is under protection including 7.9%
of protected areas (PAs) and 3.6% of no-hunting zones (HZs), where
only hunting is prohibited (Tab. 4). However, relatively large areas of
low suitable habitat are present, covering, respectively, 81% of PAs
and 63% of HZs. Very small parts of PAs (1.2%) and HZs (0.06%)
were classified as high quality habitats for the honey badger (Tab. 4).
The majority of suitable habitats, located in Khuzestan Plain were not
protected (Fig. 4).

Discussion

In this study, habitat selection of honey badgers was investigated in
Southern Iran, using an ensemble approach. Although most SDMs of-
ten produce good results, ensemble models (Araújo and New, 2007),
combine the strength and avoid the inherent biases of different SDM al-
gorithms (Meller et al., 2014), producing better predictions compared
to a single model (Breiner et al., 2015). However, the lack of ab-
sence points is the major criticism and source of uncertainty in such
presence- only methods (e.g. Senay et al., 2013). Confirmed absence
data, however, are very difficult to obtain, especially for mobile and elu-
sive species such as the honey badger. To cope with the lack of absence
data, we randomly selected 10000 pseudo-absences from the extent of
the study area. This strategy improve the selection of an appropriate
pseudo-absence, and can yield the most reliable distribution models
(Barbet-Massin, 2012). Many studies report increased accuracy using

Table 3 – Contribution of environmental variables in the honey badger’s distribution mod-
els in Southern Iran. Scores are given as mean±standard deviation (SD). Contribution
values were calculated based on the di�erence in Pearson correlation scores between
general model and randomized (e.g., permuted) models for each variable. Variable de-
scriptions are given in Tab. 1.

Variable Score±SD
BIO1 0.27 ±0.46
Human footprint 0.26 ±0.67
Village Density 0.22 ±0.91
NDVI 0.17 ±0.23
BIO2 0.14 ±0.12
Wood 0.10 ±0.10
Roughness 0.08 ±0.14
Agriculture 0.07 ±0.38

this approach (e.g. Chefaoui and Lobo, 2008; Warton and Shepherd,
2010; Senay et al., 2013).

Based on the distribution modelling, annual mean temperature was
found to be the most important climatic variable affecting the potential
distribution of honey badgers. This variable is usually considered as
the most important variable describing the climate of an area (Parme-
san, 2006). Mean diurnal range (BIO2) also affected the suitability of
the badger to a lesser degree. Climate types of Southern Iran include
hot desert climate in plains and the coast of Persian Gulf and steppe
climate in the mountain ranges. Honey badgers have been studied in
semiarid environments of the southern Kalahari, showing that tempera-
ture is the major factor affecting honey badger activity schedules (Begg
et al., 2005). Animals avoid being active during the hottest part of the
day and the colder part of the night (Begg et al., 2016).

The contribution scores of anthropogenic variables (human footprint
index and village density) in the model were noticeable (Tab. 3), in-
dicated honey badgers do not avoid human-modified areas. Human-
dominated regions may have ecological importance, providing more
services for some species than previously thought (Tsunoda et al., 2017;
Lanszki et al., 2018). In South Africa, for example, a higher occur-
rence of honey badgers were recorded in plantations compared to nat-
ural habitats (Kheswa et al., 2018). Mesocarnivovers such as honey
badgers may benefit from conditions in human-modified landscapes,
capable of using new habitat opportunities. The European badger also
seems to benefit from human-modified areas such as agro-forestry and
hedgerows, probably because of food availability and suitable sett lo-
cations (Chiatante et al., 2017).

Behavioural responses by animals to such environmental change, can
help them adjust to new conditions. Studies in South Africa revealed
that in undisturbed areas, by human, the honey badger is regularly ac-
tive during the day (Begg et al., 2016). However, it has been suggested
that the foraging behavior of the species has shifted to nocturnal due
to human activities (Skinner and Smithers, 1990). This is likely to in-
crease foraging costs and may place an additional stress on the survival
of the species, especially in habitats with high human activity (Begg,
2001). Our ensemble model, further, revealed large areas of low qual-

Table 4 – Area and proportion of suitable/unsuitable habitats for honey badgers in South-
ern Iran.

Category
Area
(km2)

Percentage
of study area

Protected areas
km2 (%)

No-hunting
zones (%)

Total study area 515622 41000 (7.9) 18554 (3.6)
Unsuitable areas 381560 74
Suitable areas 134062 26

Low
suitability

7219 1.4 33254 (81.2) 11707 (63.34)

Medium
suitability

118593 23 7236 (17.6) 6835 (36.6)

High
suitability

8250 1.6 510 (1.2) 12 (0.06)
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ity of natural habitats across the study area, covering respectively 81%
of PAs and 63% of HZs. Thus, in the absence of protected high- qual-
ity habitats, some areas such as plantations, farms, and urban areas may
attract honey badgers. In the current study, field evidence such as road
mortalities and illegal hunting of individuals outside PAs suggested that
the quality of areas under protection is not enough for supporting honey
badgers (also see Qashqaei et al., 2015).
Limited availability of optimal conditions may be the reason for such

a deviation from ideal habitats (Titeux et al., 2007). Environmental
changes lead organisms to settle in poor-quality habitats, where their
fitness may be lower than in other available habitats, known as eco-
logical traps (Dwernychuk and Boag, 1972). An ecological trap is a
habitat in low quality for reproduction and survival that cannot sustain
a population. It seems valid to state that honey badger distribution of-
ten overlap with human areas and that this likely presents the risk of an
ecological trap.
Ecological traps have important conservation and management im-

plications (Sahney et al., 2010; Demeyrier et al., 2016; Hale and
Stephen, 2016). For example, ecological traps are likely to increase
local extinction risk (Battin, 2004). Several studies suggested that this
trap phenomenon may be widespread because of human-induced rapid
environmental changes (e.g. Battin, 2004; Hale and Stephen, 2016;
Lamb et al., 2017. Although many species are frequently reported to
breed in human-modified habitats (Sih, 2013), the data regarding fit-
ness or demographic consequences of this shift, in habitat use, are lim-
ited. Without information on honey badger fitness in human-modified
areas, the conclusion that these are ecological traps cannot be drawn.
In conclusion, model-based predictions and their implications can

be used to guide future research and conservation planning. With our
case study, we showed that SDMs can identify the environmental con-
ditions and geographical areas that are used by the species, but these
areas may not be the most suitable ones for the species fitness. For ex-
ample, while we identified areas of high-quality honey badger habitat
throughout southern Iran, we also found that honey badgers were much
more frequently associated with human habitats than expected, which
could potentially result in decreased fitness and reproductive potential
for individuals in these areas. Increased protection of areas including
high-quality honey badger habitat could also help the species avoid eco-
logical traps. There are a couple of spots (Fig. 3) where high-quality
habitats are unprotected and would be valuable in a protected area. Fur-
ther research on honey badger fitness in human-modified areas are re-
quired to evaluate the hypothesis of ecological traps.
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