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Abstract: 
Roe deer (Capreolus capreolus) are widespread across Europe and exhibit adaptability to various 
habitats. In the last couple of decades, population numbers have significantly increased, except for 
certain areas which have experienced population declines due multifactorial reasons, including the 
impact of fascioloidosis. In Croatia, roe deer are primarily found in lowland region, while their 
population in mountain areas is smaller and more scattered due to habitat limitations and presence of 
large predators. The variability of major histocompatibility complex (MHC) genes offers insight into the 
population's ability to combat new pathogens and to cope with changing environments. Here, we 
examined the variability and selection patterns of MHC class II DRB locus in roe deer from two distinct 
habitats in Croatia. Ten alleles were identified in 133 individuals accompanied by high amino acid 
evolutionary distance (41.1%). The lack of significant structuring on the DRB was observed between 
the two habitats, with ambiguous results from contemporary and historical selection analysis. 
Furthermore, our results highlight the need to investigate other immune loci, which could provide 
insight into the relationship between pathogen-mediated selection and adaptation potential in roe deer. 
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MHC DIVERSITY IN ROE DEER FROM CROATIA  

 

ABSTRACT 

 

Roe deer (Capreolus capreolus) are widespread across Europe and exhibit adaptability to 

various habitats. In the last couple of decades, population numbers have significantly 

increased, except for certain areas which have experienced population declines due 

multifactorial reasons, including the impact of fascioloidosis. In Croatia, roe deer are 

primarily found in lowland region, while their population in mountain areas is smaller and 

more scattered due to habitat limitations and presence of large predators. The variability 

of major histocompatibility complex (MHC) genes offers insight into the population's 

ability to combat new pathogens and to cope with changing environments. Here, we 

examined the variability and selection patterns of MHC class II DRB locus in roe deer from 

two distinct habitats in Croatia. Ten alleles were identified in 133 individuals accompanied 

by high amino acid evolutionary distance (41.1%). The lack of significant population 

structuring on the DRB was observed between the two habitats, with ambiguous results 

from contemporary and historical selection analysis. Furthermore, our results highlight 

the need to investigate other immune loci, which could provide insight into the 

relationship between pathogen-mediated selection and adaptation potential in roe deer. 

 

 

Keywords:  Capreolus capreolus, MHC class II, immunity genes, balancing selection, adaptive 

diversity, next-generation sequencing
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INTRODUCTION  

 

The major histocompatibility complex (MHC) encodes membrane proteins that bind peptide 

antigens derived from pathogens and present them to T cells which enables adaptive immune 

response. Extraordinarily high polymorphism at the MHC, particularly in the peptide-binding 

region (PBR), is presumably driven by pathogen-mediated selection (Spurgin and Richardson, 

2010). The diversity of amino acids in the PBR affects capability of binding specific antigens and 

advancement in defence against pathogens (Stern and Wiley, 1994). Due to the functional 

importance of MHC in pathogen recognition, populations encompassing substantial MHC 

diversity might be better equipped for environmental challenges and could possess higher 

adaptation potential, and thus be less vulnerable to declines and extinction (Sommer, 2005). For 

this reason, MHC has been routinely studied in vertebrate populations with the aim to investigate 

how natural selection affects local adaptation at the molecular level (Bernatchez and Landry, 

2003). Apart from survival, MHC genes have also been linked to other fitness-related traits, 

including mate choice (Jordan and Bruford, 1998), body condition (Lenz et al., 2009) and 

secondary sexual characteristics such as ornaments (Whittingham et al., 2015). 

It is postulated that a special type of selection, termed balancing selection, promotes variability 

on the MHC with three mechanisms: heterozygote advantage (Doherty and Zinkernagel, 1975), 

negative frequency-dependent selection or rare allele advantage (Slade and McCallum, 1992) 

and temporally and spatially fluctuating selection (Hill, 1991). The heterozygote advantage 

hypothesis presumes that heterozygous individuals have the ability to recognise a broader 

spectrum of pathogens and therefore have selective advantage over homozygotes. In case of 

negative frequency-dependant selection hypothesis, rare alleles are considered advantageous 

since pathogens are more likely to adapt to the more common host MHC genotype and avoid 

host immunological defence, making individuals with rare alleles less susceptible to the disease 

(Lively and Dybdahl, 2000). The mechanism of temporally and spatially fluctuating selection is 

similar to the rare allele advantage mechanism with the major difference being that in the former 

the selective pressure of pathogens on their hosts is determined by biotic and abiotic 

environment, chance dispersal and extinction events, while in the latter by their co-evolution 
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(Spurgin and Richardson, 2010). This way balancing selection maintains large number of alleles 

in a population, promoting long-term survival of alleles as they are less likely to diminish by 

random processes (Hedrick, 1994). 

In this study, we examined genetic diversity at the MHC in two roe deer (Capreolus capreolus) 

populations from Croatia. Roe deer is an important game species and currently, the most 

abundant cervid in Europe. It inhabits various types of landscapes, including pastures, forests, 

and mixed agricultural areas (Lovari et al., 2016). Its distribution range covers most of the 

European continent and spreads further to the east to the Caucasus Mountains and the Middle 

East (Andersen, 2000). Lorenzini et al. (2014) showed that by using mtDNA, roe deer can be 

separated into four distinct groups: Eastern European, Southern Iberian, Central-Southern Italian 

and Central European. While the Central European group can be found throughout Europe, the 

distribution of other groups corresponded to the specific geographic areas. Similar 

phylogeographical distinction was later confirmed by Plis et al. (2022), describing mainly admixed 

central European population. The majority of the Croatian population, belonging to the Central 

European group, is located in the lowland region (Kusak and Krapinec, 2010), which covers parts 

of the Pannonian Plain and the hilly peri-Pannonian area. In the mountain region of Gorski Kotar 

and Lika, the density of the roe deer population is lower as a consequence of habitat conditions 

and the presence of large carnivores, with the exception of locally high densities around feeding 

sites (Kusak et al., 2012). Horizontal pathogen transmission is expected to decrease in 

fragmented and scattered populations (Anderson and May, 1979). Absence of livestock in close 

proximity to deer populations, and arid karst conditions assumingly further promote lower 

infection rates in this area. In contrast, lowland parts of Croatia might have been under stronger 

pathogen selection pressure due to higher roe deer population density (Kusak et al., 2012) which 

could promote higher pathogen transmission rates in the area (Wilson et al., 2002; Wilson and 

Reeson, 1998). One example is the allochthonous fluke Facioloides magna, now widespread in 

the majority of lowland Croatia, and a growing threat to deer populations. Infected roe deer 

experience excessive immunological reaction accompanied by heavy tissue damage made by 

migrating juvenile fluke and usually do not survive the infection (Konjević et al., 2021). To date, 
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F. magna has not spread to the mountain regions as territory conditions seem unfavourable for 

the fluke and its intermediate hosts, freshwater snails from the family Lymnaeidae.  

To date, only a few studies have focused on MHC diversity in roe deer (Bužan et al., 2022; Mikko 

et al., 1999; Quéméré et al., 2015), regardless of the species’ omnipresence in Europe. Mikko et 

al. (1999) inspected patterns of MHC variation in roe deer from Norway and Sweden, Quéméré 

et al. (2015) compared diversity between three roe deer populations in France, while Bužan et 

al. (2022) assessed and compared MHC diversity of Slovenian populations. All studies found 

limited levels of diversity in comparison with European red deer (Cervus elaphus) populations 

(Buczek et al., 2016; Bujanić et al., 2020; Fernández‐de‐Mera et al., 2009; Pérez-Espona et al., 

2019) and some cervids inhabiting other continents (Cook et al., 2022; Li et al., 2013; Van Den 

Bussche et al., 2002). Studies on the French and Slovenian roe deer populations detected 

signatures of positive selection. Additionally, the patterns of variation observed at neutral loci 

did not align with those at MHC loci, implying that balancing selection exerted a stronger 

influence than historical demographic processes.  

This study presents the first examination of MHC diversity in roe deer from Croatia. Our primary 

aim was to assess genetic diversity within the MHC-DRB exon 2 and compare diversity and 

selection patterns with data from other European roe deer populations, including the 

neighbouring Slovenian population. Additionally, we investigated whether selection influenced 

diversity differently across mountain and lowland habitats, potentially resulting in population 

structuring evident in the MHC. Lastly, we explored the utility of the DRB locus in roe deer as a 

marker for assessing population adaptation potential in future studies, particularly in response 

to the recent threat of fascioloidosis.  

 

 

MATERIALS AND METHODS  

 

For this study we used 133 samples from animals culled during regular hunting management 

operations in Croatia, including 14 samples published previously (Svetličić et al. 2022). Muscle 

and liver samples were collected from Bjelovar-Bilogora County (N=54), Zagreb County (N=39), 
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Lika-Senj County (N=20) and Primorje-Gorski Kotar County (N=20). Samples were categorised into 

two distinct populations: lowland (Bjelovar-Bilogora and Zagreb County, N=93) and mountain 

population (Lika-Senj and Primorje-Gorski Kotar County, N=40) (Fig. 1).  

DNA was extracted using Wizard Genomic DNA Purification Kit (Promega, Maidson, WI, USA), 

following the recommended protocol for animal tissue. Extracted DNA was sent to Novogene 

sequencing facility (UK) for library preparation and Illumina MiSeq PE250 sequencing. The 

amplification target was a 249 bp segment of exon, which encompasses the functionally 

important PBR of the MHC class II. Amplifications were performed using specific LA31 and LA32 

primers (Sigurdardóttir et al., 1991), previously successfully used in other roe deer MHC 

sequencing projects (Bužan et al., 2022; Mikko et al., 1999; Quéméré et al., 2015; Svetličić et al., 

2022), tagged with unique sample-specific barcodes to allow for sample multiplexing, followed 

by addition of Illumina sequencing adapters. Upon receiving raw reads from the sequencing 

facility, we performed merging of pair-end reads, quality and length filtering, as well as final allele 

calling using AmpliSAT integrated web tool (Sebastian et al., 2016), as described in Svetličić et al. 

(2022). The suitability of the utilised sequencing and allele calling method for roe deer DRB was 

previously confirmed through comparison with other methods, ensuring accurate allele 

attribution without ambiguities and null alleles (Svetličić et al., 2022). The raw sequences 

obtained from next-generation sequencing are available at the NCBI Sequence Read Archive 

(SRA) under reference number PRJNA1198488. 

Number of nucleotide variable sites, nucleotide diversity and mean number of pairwise 

differences were determined using DnaSP (Librado and Rozas, 2009). Pairwise and mean 

nucleotide and amino acid evolutionary distances according to the best-fitting substitution 

model, were calculated in MEGA11 software (Molecular Evolutionary Genetics Analysis) (Tamura 

et al., 2021).  

Allelic richness, measure of expected number of alleles assuming the smallest sample size, was 

estimated using the rarefaction method implemented in FSTAT version 2.9.3 (Goudet, 2002). The 

effective number of alleles, as well as "evenness" - the ratio of the effective number of alleles to 

the recorded number of alleles - was calculated in R using the ALRATIO script (Pojskić, 2019). 

Deviation from Hardy–Weinberg equilibrium (HWE) was tested by applying the exact test, as 
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implemented in the software Arlequin version 3.11 (Excoffier et al., 2005). Arlequin was also used 

for the Ewens-Watterson test (Watterson, 1978), as modified by Slatkin (1996) as well as AMOVA 

analysis among and within the studied populations. Program STRUCTURE v2.3.4.59 (Pritchard et 

al., 2000) was used to identify possible genetic structure in the analysed samples. This program 

identifies the number of genetic clusters (K) within a population and assigns individuals to these 

clusters using a Bayesian clustering approach. Analyses were conducted for K values ranging from 

1 to 5, with five iterations for each K. Each iteration included a burn-in phase of 100,000 

generations, followed by a Markov Chain Monte Carlo (MCMC) run of 1,000,000 generations. The 

analyses were performed using the admixture model and assuming correlated allele frequencies. 

We uploaded the results to StructureSelector web server (Li and Liu, 2018), which plots the log 

probability of the data (LnP(K) to determine the optimal K value. 

To supplement Ewens-Waterson test and further investigate possible role of natural selection we 

conducted other neutrality tests, including Tajima’s D, Li’s F* and Fu and Li’s D*, implemented in 

DnaSP. A selection test based on the rate of nonsynonymous (dN) and synonymous substitutions 

(dS) was conducted using MEGA 11 (Tamura et al., 2021) for entire sequences and antigen 

binding sites (ABS). Moreover, we tested for the presence of selection on individual codons using 

several programs. EasyCodeML (Gao et al., 2019) was used to detect positive selection, applying 

the maximum likelihood approach. We compared two models: M7, which proposes neutral 

evolution (null hypothesis), with M8, which represents an alternative model that implies positive 

selection (ω>1). Both models assume beta distribution of ω. Additionally, we applied methods 

available at Datamonkey web server (Martin et al., 2010), including FEL (Fast, Unconstrained 

Bayesian AppRoximation) (Murrell et al., 2013), FUBAR (Fast, Unconstrained Bayesian 

AppRoximation) (Murrell et al., 2013) and MEME (Mixed Effects Model of Evolution) (Murrell et 

al., 2012). 

 

 

RESULTS  
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We identified a total of 10 MHC-DRB alleles in 133 roe deer individuals, all of which were 

previously documented in the literature (Table S1). Consistent with published data, we found 

that there were no more than two alleles per individual, further confirming the presence of only 

one DRB locus in roe deer. Alleles were either 249 bp or 246 bp long, depending on whether they 

contained a deletion of codon 65. Alleles in which deletion was detected were Caca-DRB*0301, 

Caca-DRB*0302, Caca-DRB*0303 and Caca-DRB*0402. The number of polymorphic sites was 22 

(8.84%), without considering the aforementioned codon deletion. Ten identified alleles could be 

translated to 9 unique amino acid sequences since alleles Caca-DRB*0302 and Caca-DRB*0402 

differed in only one nucleotide and coded for the same amino acid sequence. None of the 

detected sequences included any stop codons, implying their functionality. 

Nucleotide diversity (π) was estimated at 4.2% and the average number of nucleotide differences 

among alleles (k) was 10.29. The mean nucleotide distance was 10.8%, with pairwise values 

ranging from 0.4% to 38.2%. Mean amino acid distance was higher in comparison and was 

estimated at 41.1%, suggesting sufficient levels of functional divergence (Table 1). The largest 

amino acid pairwise distance was observed comparing allele Caca-DRB*102 to alleles Caca-

DRB*0302 and Caca-DRB*0402 (12 substitution steps) since the last two alleles are identical on 

the amino acid level.  

Allele with the highest overall frequency was the Caca-DRB*0301 (39.8%), followed by Caca-

DRB*0302 (19.5%). The remaining eight alleles had a frequency of <10%. The rarest allele was 

Caca-DRB*0403, found only in two individuals (0.8%) (Table 2). Thirty-two individuals (24.1%) 

were homozygous, 21 (65.6%) of which were homozygous for the most common allele, Caca-

DRB*0301. The p-values of tests for Hardy-Weinberg Equilibrium (HWE) deviation were not 

significant, indicating that neither the population data nor the overall dataset deviated from 

Hardy-Weinberg expectations (Table 3). 

Eight alleles were shared between the lowland and the mountain population, the allele Caca-

DRB*0403 was detected only in two individuals from the lowland population, and allele Caca-

DRB*0405 was detected only in five individuals from the mountain population. In both 

populations, allele frequencies of the most common alleles (Caca-DRB*0301 and *0302) followed 
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the trend for the overall data (Table 2). Expected heterozygosity was estimated at 0.815 in the 

mountain population, which was a bit higher than in the lowland population (0.763, Table 3). 

Allelic richness, based on the minimum sample size of 40 individuals, was slightly higher in the 

mountain population as well (9.0 vs 8.6, Table 3). Results of the AMOVA calculations attributed 

96.83% of variance to the within population variation and only 0.70% to the between populations 

variation. The value of FST was notably very low, only 0.007, and statistically insignificant (Table 

4). STRUCTURE analysis further confirmed the absence of visible structuring of Croatian roe deer 

population at the DRB locus, as the most probable number of identified clusters was K = 1 and 

higher values of K resulted in lower probabilities (Figure S1). 

Ewens-Watterson-Slatkin test revealed significantly higher values of expected homozygosity than 

the observed (Fexp>Fobs), more than would be expected under the mutation-drift equilibrium, 

implying evenness in allele frequencies and the presence of balancing selection (Table 5). 

Evenness was further tested through ratio of recorded (An) and effective number of alleles (Ae) 

(Table 3). Values close to zero indicate uneven distribution of allelic frequencies while values 

closer to one imply evenness due to the role of balancing selection. Ratio of An to Ae had values 

close to 0.5 in the overall data and for the lowland population, and was a bit higher in the 

mountain population (0.618, Table 3), without statistical significance.  

Results of dN/dS tests of selection conducted in MEGA 11 on entire sequences and specifically 

on ABS showed values greater than 1, indicating potential selection, but these values were not 

statistically significant (Tables S2 and S3). Fu and Li's D* as well as Fu and Li's F* neutrality tests 

showed statistical significance for specific populations and overall data, while Tajima’s D was only 

significant for the overall data (Table 5). After the analysis of positive selection performed in 

EasyCodeML, the null model M7 was rejected in favour of the alternative M8 for three codon 

sites (13, 57, 86). Additionally, codon site 86 was found to be under the influence of positive 

selection by the methods FEL, FUBAR and MEME (Table S4).  

 

 

DISCUSSION 
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After analysing the DRB locus in 133 roe deer from Croatia, we observed low to moderate levels 

of diversity. Ten identified alleles corresponded to nine different amino acid sequences, which is 

notably lower than the number of alleles identified in majority of DRB studies on other cervids or 

related species e.g. red deer (46 alleles in 155 individuals, Buczek et al., 2016), white-tailed deer 

(18 alleles in 126 individuals, Van Den Bussche et al., 2002), caribou (21 alleles in 114 individuals, 

Kennedy et al., 2011), Ussuri sika deer (15 alleles in 43 individuals, Li et al., 2013), forest musk 

deer (seven alleles in 52 individuals, Cai et al., 2015), Chinese muntjac (20 alleles in 12 individuals 

(Jian et al., 2010). Furthermore, percentage of variable nucleotide sites was also quite low 

(8.84%) in comparison with some other studies on DRB alleles e.g. 27.6% in mule deer (Cook et 

al., 2022), 31.3% in Scottish red deer (Pérez-Espona et al., 2019), 34.9% in Ussuri sika deer (Li et 

al., 2013). Four out of the ten identified alleles exhibit a deletion at nucleotide position 65, 

contributing to sequence diversity. This deletion has been previously documented in the DRB loci 

of cattle (Mikko and Anderson, 1995), European bison (Radwan et al., 2006), and forest musk 

deer (Cai et al., 2015). Codon 65 encodes a residue in the α-helical chain, suggesting its potential 

impact on peptide binding (Mikko et al., 1997).  

Since MHC genes code for the molecules that present antigens to the T-lymphocytes, reduced 

diversity in MHC could increase the vulnerability of populations to infections. However, selection 

may favour a specific number of alleles for their effectiveness, even if that number appears 

deficient (Radwan et al., 2010). A small number of retained alleles in a population can be 

compensated for by high functional divergence between those alleles, particularly following 

sudden demographic changes, as indicated by the divergent alleles hypothesis (Wakeland et al., 

1990). Because of the socioeconomic changes in rural areas, forest plantations and 

reintroductions, roe deer population numbers in the last decades have dramatically increased 

(Apollonio et al., 2017), so presently, the estimated number of mature individuals in central 

Europe is around 15 million (Lovari et al., 2016). This population expansion could have influenced 

MHC diversity, due to forces of genetic drift and migration, which has already been argued in 

Bužan et al. (2022). Although the number of recorded alleles in roe deer is relatively low, the 
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amino acid distance value (41.1%) is notably high, indicating a significant level of functional 

diversity among the recorded alleles and recognition of a larger array of antigens compared to 

alleles that are more similar. Moreover, in line with the "heterozygote advantage hypothesis" 

(Doherty and Zinkernagel, 1975), increased levels of heterozygosity contribute to a wider 

spectrum of antigen recognition. Heterozygosity levels determined in this study were consistent 

with Hardy-Weinberg equilibrium (HWE), albeit ranging from moderate to high values (Table 3). 

Examination of the presence of selection yielded ambiguous results. Concerning the tests capable 

of detecting recent selection patterns, the frequency-based Ewens-Watterson-Slatkin test 

indicated a potential for selection, while the ratio of observed to effective number of alleles, 

known as allelic evenness, generally fell within intermediate values. Only the mountain 

population exhibited somewhat higher than intermediate value of allelic evenness. Therefore, 

the results of the Ewens-Watterson-Slatkin test should be interpreted cautiously, particularly 

since they are not supported by genotype-based evidence of selection, such as an excess of 

heterozygosity (Garrigan and Hedrick, 2003). Standard neutrality tests Fu and Li's F* and D* were 

positive and significant, indicative of balancing selection or demographic changes. Selection over 

a larger time scale was further analysed with Tajima's D and dN/dS tests on the whole sequence. 

While Tajima's D was significant only for the overall dataset, dN/dS tests were not significant for 

entire sequences or ABS inferred from the human ortholog. Selection typically targets specific 

codons rather than the entire sequence (Hughes and Nei, 1988). However, if the rate of 

nonsynonymous mutations significantly surpasses that of synonymous mutations, signs of 

positive selection should be detectable across the entire sequence (Yang and Bielawski, 2000). In 

this study, however, such evidence was not observed. The historical signal of selection on the roe 

deer DRB locus generally seems quite weak, as we could only identify three codons with a distinct 

signature of selection, when we used site specific tests in CodeML , two of which corresponded 

to the human ortholog (Brown et al., 1993).  

We compared the results of our study to other research on European roe deer populations, 

namely findings by Mikko et al. (1999) on the Scandinavian (Sweden, Norway) roe deer 

population, Quéméré et al. (2015) on the French population and Bužan et al. (2022) on the 

Slovenian population. Interestingly, identical number of alleles (10) was found in studies on the 
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Croatian, French and Slovenian population, regardless of the sample size (133 in this research, 

156 in Bužan et al., 2022; 476 in Quéméré et al., 2015). Nine out of 10 alleles detected in this 

study were shared with Slovenian population, seven with French and two with the Scandinavian 

population (Mikko et al., 1999). The pronounced contrast in MHC diversity between Central 

European populations and Scandinavian populations is likely attributed to an extreme population 

bottleneck during the severe regional cooling period in the Middle Ages. This is evidenced by the 

remarkably low MHC diversity reported in the study by Mikko et al. (1999), which identified only 

four alleles in 62 animals, along with low levels of heterozygosity ranging from 0.24 to 0.58. 

Conversely, Croatian and Slovenian populations show a high similarity in the MHC diversity 

pattern, demonstrated by an almost complete match in detected alleles. Additionally, the most 

common alleles in both populations are Caca-DRB*0301 and *0302. While there is potential for 

the continuous distribution of roe deer between neighbouring Slovenia and Croatia without any 

major geographical barriers to prevent gene flow between the populations, the roe deer are 

predominantly territorial animals that rarely migrate long distances. Therefore, the observed 

similarity at the MHC level might be a relic from the glacial refugia. What stands out as a 

noteworthy difference between these populations is substantially higher proportion of 

homozygotes in Slovenian roe deer population, i.e. 46% (Bužan et al., 2022) vs. 24.1% in this 

research, and consequently deviation from HWE in overall dataset as well as in each of the three 

clusters in Slovenia, and conformation to HWE of Croatian populations. However, deviation from 

HWE with notably higher homozygosity than expected, as in the case of Slovenian population, is 

not unprecedented, and in fact was previously reported in some cervids (Cook et al., 2022; Van 

Den Bussche et al., 2002; Wilson et al., 2003). 

Differences in selection pressures across the geographical landscape can lead to population 

structuring at the MHC, as demonstrated in various vertebrate populations (Babik et al., 2005; 

Bryja et al., 2007; Cook et al., 2022; Ekblom et al., 2007; Evans et al., 2010; Herdegen et al., 2014). 

In contrast, balancing selection can lower level of genetic structure on the MHC since it maintains 

allelic distributions across populations (Sutton et al., 2011). However, apart from selective forces, 

neutral forces are also acting on the MHC region, which can in some cases counteract selective 

forces resulting in ambiguous genetic patterns. Similarly, in two populations from Croatia, larger 
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lowland population and smaller scattered mountain population, we also failed to detect evidence 

of population genetic structuring based on the DRB locus. Results of AMOVA and STRUCTURE 

analysis further confirmed absence of distinct structure on the MHC level. Expected and observed 

heterozygosity, as well as allelic richness were slightly higher in the mountain than in the lowland 

population. Population-specific alleles were Caca-DRB*0405 detected exclusively in Croatian 

mountain region (Svetličić et al., 2022), and the least frequent allele Caca-DRB*0403, previously 

reported in Slovenian population. 

The DRB locus is widely recognized as the most variable class II MHC locus in humans (Barker et 

al., 2023) making it a staple marker in the majority of wildlife MHC studies (e.g. Murray and White 

1998; Babik et al., 2005; Froeschke and Sommer 2005; Schaschl et al., 2006; Lenz et al., 2013; 

Arbanasić et al., 2019; Dong et al., 2023). In roe deer, the limited number of recorded alleles and 

the weak evidence for long-term positive selection suggest somewhat reduced degree of 

variability at the DRB locus. Demographic events, particularly past bottlenecks, and recent 

population expansions, have likely influenced this, as mentioned above. Previous research on 

deer MHC has primarily focused on DRB, with other MHC loci being considered only rarely (Liu et 

al., 2013; Swarbrick and Crawford, 1997; Wan et al., 2011; Wu et al., 2012). Exploring other MHC 

loci might be beneficial for disentangling neutral and selective effects acting on roe deer 

immunity genes. Furthermore, other genes involved in immune response act in combination with 

the MHC, especially in case of species with lower MHC variation (Acevedo-Whitehouse and 

Cunningham, 2006). Quéméré et al. (2015; 2021) investigated the role of innate immunity in 

maintenance of immunogenetic variability in roe deer. They found levels of variability at toll like 

receptors at least comparable to those detected at the MHC, suggesting that they have 

synergistic effects on overall immune competence. Further pathogen-specific research with 

broader candidate gene targets, including other MHC loci as well as innate immunity genes, could 

potentially elucidate roe deer immunogenetic contributions to disease resistance and population 

viability. 
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TABLES 

 

Table 1. Sequence polymorphism results for 10 MHC-DRB alleles detected in roe deer individuals 

from lowland and mountain populations, and overall. 

Population 
An 

 
N π k 

Nucleotide 

distance * 

Amino acid 

distance ** 

Lowland 9 93 0.043 10.611 0.133 0.433 

Mountain 9 40 0.043 10.611 0.115 0.440 

Overall 10 133 0.042 10.289 0.108 (0.07) 0.411 (0.73) 

An- number of recorded alleles, N – number of individuals, π – nucleotide diversity, k-mean number of 

pairwise differences, * T92 + G substitution model, ** JTT + G substitution model, SD is given in 

parenthesis. 
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Table 2. Frequencies and relative frequencies of 10 roe deer MHC-DRB alleles from Croatia  

 

Lowland (N=93) Mountain (N=40) Overall (N=133) 

Allele frequency 
relative 

frequency 
frequency 

relative 
frequency 

frequency 
relative 

frequency 

Caca-DRB*0102 1,2 12 6.5% 6 7.5% 18 6.8% 

Caca-DRB*0201 1,2,3 14 7.5% 2 2.5% 16 6.0% 

Caca-DRB*0301 1,2,3 79 42.5% 27 33.8% 106 39.8% 

Caca-DRB*0302 1,2 34 18.3% 18 22.5% 52 19.5% 

Caca-DRB*0303 1,2 18 9.7% 3 3.8% 21 7.9% 

Caca-DRB*0304 1,2 11 5.9% 6 7.5% 17 6.4% 

Caca-DRB*0401 1,2 11 5.9% 5 6.3% 16 6.0% 

Caca-DRB*0402 1 5 2.7% 8 10.0% 13 4.9% 

Caca-DRB*0403 1 2 1.1% 0 0.0% 2 0.8% 

Caca-DRB*0405 0 0.0% 5 6.3% 5 1.9% 

Alleles with deletion of one codon are underlined. 1- previously detected in Bužan et al. (2022), 
2- Quéméré et al. (2015), 3- Mikko et al. (1999) 
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Table 3. Hardy-Weinberg equilibrium test results, allelic richness and ratio of recorded and 

effective number of alleles (Ae/An) for lowland and mountain roe deer populations and the 

overall data set. 

 

 Ho He PHWE Allelic richness 
 

 Ae/An 

Lowland 0.731 0.763 0.156 8.61 0.463 

Mountain 0.825 0.815 0.668 9.00 0.618 

Overall 0.761 0.778 0.167 10.00 0.455 
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Table 4. Results of AMOVA analysis and fixation index (FST) values between mountain and 

lowland population.   

Source of 
variation  

Variance 
components 

Percentage 
of variation 

FST (p-value) 

Among 
populations 

0.00273 0.70  

Among individuals 
within populations 

0.00968              2.47  

Within individuals 0.37970 96.83  

Total 0.39212 100 0.007 (0.24) 

 

------------------------------------------------------------------------  

625

626

627

628

629

630

631

632

633

https://www.editorialsystem.com/pdf/download/2441863/d2c65b2038582ea73decfeafebc61148/
https://www.editorialsystem.com/hystrix
https://www.editorialsystem.com/


Manuscript body
Download DOCX (169.6 kB)

30 
 

Table 5. Results of neutrality tests conducted on two roe deer populations and the overall data 

 

 Ewens-Watterson-Slatkin test   
 

 F obs. F exp. 

p 
(Slatkin's 

exact 
test) 

Fu and 
Li's D* 

Fu and 
Li's F* 

Tajima's 
D 

Lowland 0.241 0.342 0.028 1.835 2.250 1.925 

Mountain 0.196 0.285 0.031 1.792 2.088 1.678 

Mean 
(Overall) 

0.218 0.314 0.030 1.834 2.430 2.275 

Significant values are given in bold. 
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FIGURES 

 

 

Figure 1. Map of Croatia showing the locations of lowland and mountain populations sampled 
across four Croatian counties, each marked by number. A legend indicates the corresponding 
county numbers. 
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